Item 1: Unit of work – Part A written

Unit Plan

Unit Title It's shocking	Stage Three
Term Three	Strand Physical World
Duration 10 hours (60 minutes per lesson)	Sub-strand Electricity

Rationale

The unit 'It's Shocking' supports students to build knowledge about the learning concept, electricity, which features in the strand 'Physical World' in the science curriculum.

The unit works with the NSW K-10 Science Syllabus and incorporates a constructivist teaching and learning approach. Students will actively engage in the processes of working scientifically and working technologically (Board of Studies).

Students will develop knowledge, understanding of and skills in applying the processes of working scientifically and working technologically through hands on experiences.

In compliance with the Australian Curriculum Science and Technology K-10 Syllabus, this unit of work implements a constructivist approach to all teaching and learning, so students are the centre of interactive and inquiry based experiences. Student's sense of wonder and curiosity about the world is fostered through engagement in the processes of Working Scientifically and Working Technologically.

The unit will allow students to develop an understanding of the relationships and significance of the 'Physical World' through questioning and problems solving. In this unit of work, Kath Murdoch's inquiry based learning approach is addressed throughout (Wilson & Murdoch, 2004). This allows students to pose questions, test their ideas, and develop arguments and present reasoning and justification for their responses.

'It's shocking' is based on Bybee 5E model, which features engage, explore, explain, elaborate and evaluate. This teaching and learning strategy encourages students to engage with the topic activate their higher order thinking skills and transfer new knowledge to other contexts.

1. Rebecca Downes (20112754) Max Ainsworth (20112681) Georgia Keeley (20103689) Sally Bolgarschii (20103748)

Item 1: Unit of work – Part A written

Outcomes

KLA – Science and Technology

Outcomes / Performance Indicators

ST3-6PW: Describes how scientific understanding about the sources, transfer and transformation of electricity is related to making decisions about its use

ACSSU097: Electrical circuits provide a means of transferring and transforming electricity Students:

- Identify potential risks and demonstrate safe use when using electrical circuits and devices
- Demonstrate the need for a circuit to be complete to allow the transfer (flow) of electricity
- Construct simple circuits incorporating devices, eg switches and light globes
- Observe and describe how some devices transform (change) electricity to heat, light, sound or movement, eg hair dryers, light globes, bells and fans

ACSSU219: Energy from a variety of sources can be used to generate electricity and this knowledge can inform personal and community-based decisions about using these sources sustainably

ST3-4WS: Investigates by posing questions, including testable questions, making predictions and gathering data to draw evidence-based conclusions and develop explanations

ST3-5WT: Plans and implements a design process, selecting a range of tools, equipment, materials and techniques to produce solutions that address the design criteria and identified constraints

ACSHE098: Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena.

ACCHE099: Important contributions to the advancement of science have been made by people from a range of cultures

ACSHE100: Scientific understandings, discoveries and inventions are used to solve problems that directly affects peoples lives

ACSHE220: Scientific knowledge is used to inform personal and community decisions

ACSIS232: What guidance, pose questions to clarify practical problems or inform a scientific investigate, and predict what the findings of an investigation may be

ACSIS103: With guidance, plan appropriate investigation methods to answer questions or solve problems

ACSIS104: Decide which variables should be changed and measure in fair tests and accurately observe, measure and record data, using digital technologies as appropriate

ACSIS105: Use equipment and materials safely, identifying potential risks

Item 1: Unit of work – Part A written

ACSIS107: Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate

ACSIS221: Compare data with predictions and use as evidence in developing explanations

ACSIS108: Suggest improvements to the methods used to investigate a question or solve a problem

ACSIS110: Communicate ideas, explanations and process in variety of ways, including multi-modal texts

KLA: English

Outcomes / Performance indicators

ACELA1515: Understand that different social and geographical dialects or accents are used in Australia in addition to Standard Australian English

ACELA1516: Understand that strategies for interaction become more complex and demanding as levels of formality and social distance increase

ACELA1517: Understand the uses of objective and subjective language and bias

ACELA1524: Identify and explain how analytic images

ACELY1709: Participate in and contribute to discussions, clarifying and interrogating ideas, developing and supporting arguments, sharing and evaluating information, experiences and opinions

ACELY1816: Use interaction skills, varying conventions of spoken interactions such as voice volume, tone, pitch and pace, according to group size, formality of interaction and needs and expertise of the audience

ACELY1710: Plan, rehearse and deliver presentations, selecting and sequencing appropriate content and multimodal elements for defined audiences and purposes, making appropriate choices for modality and emphasis

Interpreting, analysing and evaluating

KLA: Mathematics

Outcomes / Performance indicators

ACMSP147: Interpret and compare a range of data displays, including side-by-side column graphs for two categorical variables A student:

- Describes and represents mathematical situations in a variety of ways using mathematical terminology and some conventions MA3-1WM
- Selects and applies appropriate problem-solving strategies, including the use of digital technologies, in undertaking investigations **MA3-2WM**
- Orders, reads and represents integers of any size and describes properties of whole numbers MA3-4NA

ACELY1711: Analyse how text structures and language features work together to meet the purpose of a text ACELY1712: Select, navigate and read texts for a range of purposes, applying appropriate text processing strategies and interpreting structural features, for example table of contents, glossary, chapters, headings and subheadings ACELY1713 Use comprehension strategies to interpret and analyse information and ideas, comparing content from a variety of textual sources including media and digital texts Creating texts ACELY1714 Plan, draft and publish imaginative, informative and persuasive texts, choosing and experimenting with text structures, language features, images and digital resources appropriate to purpose and audience	
KLA: HSIE	KLA: Creative Arts
Outcomes / Performance indicators	Outcomes / Performance indicators
HT3-1: Describes and explains the significance of people, groups, places and events to the development of Australia HT3-2: Describes and explains different experiences of people living in Australia over time	VAS3.2: Makes artworks for different audiences assembling materials in a variety of ways DRAS3.3: Devises, acts and rehearses drama for performance to an audience

<u>Assessment</u>				
Assessment - Formative (during learning engagements)	Assessment - Summative (at the end)			
Formative assessment occurs in the Explore and Explain phases in the	Summative assessment of the students' achievement developed will be			
unit. This will include: discussion, observing students conversations,	conducted at the Elaborate phase for the Science Inquiry Skills and in			
teacher-student conversations, and samples of students' work. This will	the Evaluate phase for the Science Understanding.			
allow the teacher to monitor the developing understanding of the				

Rebecca Downes (20112754) Max Ainsworth (20112681) Georgia Keeley (20103689) Sally Bolgarschii (20103748) 4.

Item 1: Unit of work – Part A written

students and be able to provide feedback that can extend and deepen students' learning.

Evaluation of the Unit

Evaluation of the unit will be based on:

Were each lessons teaching and learning activities effective?

Did the students' develop an understanding of the concept?

Were the lesson engaging and interesting for the students?

Was there anything that could be changed or altered to make the lesson more interesting or effective?

Were the resources used throughout the unit appropriate and useful for students to achieve the outcome?

Were the students using scientific language and the correct terminology throughout the unit?

Were those who struggled provided with resources and help to improve their knowledge?

What worked well throughout the unit of work?

Was the overall unit of work successful?

Were the outcomes and indicators achieved in each lesson?

Did the unit of work follow the 5E model?

Were appropriate assessment tasks used for the unit of work?

Did the unit incorporate Aboriginal and Torres Strait Islanders

Students

Number

There are 25 students in the stage 3 class

Differentiation needs

Learning experiences will cater to all readiness levels as well as students existing prior knowledge, experiences and preconceptions.

Students will be grouped with children of the same ability and also within mixed ability groups.

Lessons activities will be carried out through a constructivist approach where the children will be working together as whole group, in pairs or individual.

Differentiation will be evident throughout the lessons. This caters to the gifted and talented students, the

$Skills, interests, prior\ knowledge$

Activities in this unit will engage students prior knowledge and spark their interest in scientific concepts that are connected to their world, as well as testing their pre conceptions around different scientific ideas.

Item 1: Unit of work – Part A written

hearing impaired and aboriginal and Torres Strait Islander students. Some examples include:

Lesson 1: 'Building a circuit'

The gifted and talented students will be given more equipment to challenge and extend their own knowledge and understanding of how a circuit works and are able to explore different forms of current electricity.

Lesson 2: Light up my life

Extension - Challenge students who have quickly created a functional circuit using two wires to create a functional circuit using only one wire (which they can do if they connect the remaining connection point on the light bulb directly with the remaining connection point on the battery).

Lesson: 8 ways learning framework.

Aboriginal and Torres Strait Islander students are catered to through the use of the 8 ways learning framework. The unit incorporates elements of the framework for example using symbols and gestures, non-verbal teaching and learning, deconstructing and reconstructing and learning maps.

Lesson 9: Switch on

6.

Optional: Conduct this lesson as an open investigation by asking the teams: 'How can we make a switch?'.

Optional: Students could substitute an electric buzzer, electric motor or mini-fan for the bulb.

Essential understandings Students will learn about • How a circuit works • How to construct a simple circuit incorporating devices • Observe and describe how some devices transform electricity to heat energy, light, sound or movement • The variety of sources that generate electricity | Learning Matter | Essential skills | | Students will learn to: | Investigate, predict, observe, classify, explore, discover, experiment, document, plan, design and make and record findings. Examples of this include: | | • Conducting guided investigations of how to create a circuit

Item 1: Unit of work – Part A written

- How a battery works
- What is in a light bulb and how it works
- Different battery sizes
- Different battery operated devices
- How a switch works
- How to construct different types of switches
- The impact on what electricity has had on technology
- What materials are conductors and inductors
- How a circuit works
- How to construct a simple circuit incorporating devices
- Observe and describe how some devices transform electricity to heat energy, light, sound or movement
- The variety of sources that generate electricity
- How a battery works
- What is in a light bulb and how it works
- Different battery sizes
- Different battery operated devices
- How a switch works
- How to construct different types of switches
- The impact on what electricity has had on technology
- What materials are conductors and inductors

Related text types

- Science journals
- Diagrams Cutaways, Circuit, Labeled diagrams, Annotated diagrams
- Word Walls
- Biographies
- Chronological lists

- Predicting, observing and recording outcomes of simple circuits
- Classifying conductors and insulators
- Design and construct a simple circuit

Item 1: Unit of work – Part A written

- Role-play
- Tables
- Procedural texts

	<u>Learning Sequence</u>			
5E Model	KLA	Lessons	Resources	Assessment
Engage	ACSSU097	Lesson 1: What makes it go?	For the class:	Diagnostic:
	ACSHE098	1. Introduce the concept of electricity and briefly explain	- Class journal	- Science journal
	ACSHE100	what students will learn through the unit. 8 Ways –	- Chat-board – Large	entries
	ACSIS105	Learning Maps	sheets of paper/card	- Class discussions
	ACSIS107	2. Observe and record information about different battery-	- 3 or 4 torches	- Class scientists'
	ACSIS110	operated devices in teams (Use roles students are familiar	- Collection of battery-	chat board
	ACELA1515	with - Director/Manager/Speaker)	operated devices (eg, toy,	contributions
	ACELA1516	3. Teams respond using questions of inquiry.	music player, doorbell,	- Cutaway diagrams
	ACELA1517	4. Introduce science chat-board explaining that it is designed	handheld computer game,	
	ACELA1524	for students to record words, pictures, questions, ideas and	mobile phone, walkie-	
	ACELA1526	reflections about the unit as it progresses.	talkies, megaphones)	
	ACELY1709	5. Discuss students' observations and record their ideas on	For each team:	
	ACELY1816	chat-board	- Role badges for	
	ST3-4WS	6. Students draw a cutaway diagram of how they think a torch	directors, manager and	
	ST3-5WT	works - imagining they can see inside the torch and draw	speaker – used throughout	
		it in their science journal a cutaway diagram.	- Each team member's	
		7. Brainstorm the role of electrical energy in students' lives.	science journal	
		8. Students' share and record key vocabulary.		
Explore	ACSSU097	Lesson 2 - Light up my life	For the class:	Formative: Giving
	ACSHE098	1. Review previous lesson	- Class science journal	feedback and
	ACSIS105	2. Use the Predict, Reason, Observe, Explain (PROE) strategy.	- Class science chat-board	monitoring students'
	ACSIS107	Supply a copy of 'PROE record: Lighting up my life'	- 1 enlarged copy of	developing
	ACSIS221	resource sheet to students.	'PROE record: Lighting	understanding.
	ACSIS110	3. Students complete the 'P' and 'R' section of the 'PROE	up my life' resource sheet	Assessment
	ACELA1515	sheet. Share prediction and reasons with their team and the	- Stripping pliers or knife	opportunities: PROE
	ACELA1516	class.	- Spare light bulbs and	record, explanations

ACELA1517	4. Construct and test circuits – record processes including the	batteries for replacements,	to the class, circuit
ACELA1524	'O' and 'E' steps on the 'PROE' sheet. 8 ways – Non	if necessary	diagrams, science
ACELA1526	verbal	For each team:	journal entries.
ACELY1709	5. Team speakers create a drawing on the board to show how	- Role badges	
ACELY1816	their teams made the light bulb light up and also a way	- Each team member's	
ST3-4WS	that did not make it light up. Compare team drawings and	science journal	
ST3-5WT	discuss.	- 1 copy of 'PROE record:	
	6. Introduce the term 'circuit' – add a class-generated	Lighting up my life'	
	description of 'electrical-circuit' to the class chat-board.	resource sheet per team	
	7. Review drawings, discuss similarities and differences in the	member	
	way that the students have represented equipment and	Essential Electrical kit	
	electrical circuits and how confusion could occur.	including:	
	8. Introduce and discuss the symbols used to represent the	- 1 battery (size C or D)	
	equipment students have already used. 8 Ways – Symbols	- 1 light bulb (1.5 V)	
	& Images	- 2 pieces of insulated	
	9. Review their cutaway diagram of how a torch could work	wire (15 cm long), with	
	from Lesson 1. Update or redraw this diagram to include	ends stripped of insulation;	
	what they now know, such as names/symbols of parts and	or folded foil wires	
	the need for a complete circuit for the torch to light.		
	10. Update the class science chat-board resource sheet.		

	ACSSU097	Lesson 3 Light Bulb Explorer	For the class:	Formative: Giving
	ACSHE098	1. Draw a light bulb from memory - students imagine and	- Chat-board	feedback and
	ACSHE100	draw a light bulb in their science journals	- Collection of light bulbs	monitoring students'
	ACSIS105	2. Students work in teams to explore and record observations	of different sizes and	developing
	ACSIS107	of a light bulb. Explain that students can add to or change	shapes	understanding.
	ACSIS110	their first diagram using a different colour, or start a new	- 1 enlarged copy of	Assessment
	ACELA1515	diagram.	'Inside a light bulb' sheet	opportunities:
	ACELA1516	3. Use student suggestions to label the diagram on 'Inside a	- Dictionaries	labeled diagrams,
	ACELA1524	light bulb' resource sheet. 8 Ways – Symbols and Images	For each team:	'Inside a light bulb'
	ACELA1526	4. Compile a class list of the interesting or unfamiliar words	- Role badges	resource sheet.
	ACELY1709	that students marked on the resource sheet 'Inside a light	- 1 light bulb (eg, 1.5 V	Science journal
Explore	ACELY1816	bulb'.	bulb)	entries.
	ACELY1711	5. In teams or individually students use dictionaries to locate	- 1 magnifying glass or	
	ACELY1712	the meaning of the marked vocabulary, share meanings	hand lens	
	ACELY1713	and record chat-board.	- 1 copy of 'Inside a light	
	ST3-4WS		bulb' sheet for each team	
	ST3-5WT		member	
	ACSHE098	Lesson 4: Alessandro Volta (Battery maker)	For the class:	Formative: Giving
	ACSHE099	1. Introduce various batteries and ask students to identify	- Class science chat-board	feedback and
	ACSHE100	differences in the	- Collection of batteries of	monitoring students'
	ACSIS105	battery sizes and	different sizes and	developing
	ACSIS110	labeled voltages.	voltages (eg, 1.5 V battery,	understanding.
	ACELA1515	Ask students to	watch battery, large torch	Assessment
	ACELA1516	suggest what 'V' or	battery such as a D size)	opportunities:
	ACELA1517	'volts' represent,	- 1 enlarged copy of	Literacy product
	ACELA1524	and record ideas in	'Alessandro Volta: Battery	based Alessandro
	ACELA1526	the class journal.	maker' sheet.	Volta, Chronological
Explore	ACELT1613	Ask students if	For each student:	list.
Explore	ACELITOIS	ASE STRICTION II	Tor each student.	115t.

	ACELY1709	they know any information about the history of the	- 1 copy of 'Alessandro	
	ACELY1816	battery, and record it in the class journal.	Volta: Battery maker'	
	ACELY1710	2. Read and discuss a biography of Alessandro Volta resource	optional: 1 copy of	
	ACELY1711	sheet.	'Chronological list:	
	ACELY1712	3. Discuss the way scientists develop and change their ideas	Alessandro Volta'	
	ACELY1713	4. Represent their ideas about the biography.		
	ACELY1714	a. Create a chronological list to represent significant		
	ST3-4WS	events in Volta's life		
	ST3-5WT	b. Consider why the events are significant.		
	HT3-1	c. Teams to role-play an interview with Volta		
	HT3-2	d. Role play of Galvani or Volta in a debate about		
		who is correct.		
		5. Explore perceptions of scientists and their contributions to		
		the development of ideas in science. Students have only		
		four words to describe a scientist. Ask them to draw a		
		scientist and record four words in their science journals.		
		Use the Think/Pair/Share strategy:		
		6. Introduce a new heading on the class science chat-board—		
		'Batteries'—students to explore their homes to identify		
		battery-operated devices.		
	ACSIS110	Lesson 5: Time Machine	For the class:	Formative:
	ACELA1515	Invite an Aboriginal elder of the community to the class to	- Organised meeting with	Giving feedback and
	ACELA1516	share stories about a time in their life when electricity was not	Elder.	monitoring students'
Explore	ACELA1526	readily available.	For the students:	developing
	ACELY1709	Students to ask questions and explore ways that people got	- Science journal	understanding.
	ACELY1816	power and/or lived without electricity.		Assessment
	HT3-1	Students create timelines from a day in their life exploring		opportunities:
	HT3-2	how they could function without electricity.		Discussion with
		8 ways – Story sharing, community links and land links.		aboriginal elder

Explain	ACSSU097 ACSHE098 ACSHE100 ACSIS107 ACSIS110 ACELA1515 ACELA1516 ACELA1524 ACELA1526 ACELY1709 ACELY1816 ST3-4WS ST3-5WT DRAS3.3 * 8 Ways – Symbols and Images	 Lesson 6 – Enacting electrons 1. Review the unit. 2. Participate in a whole-class role-play of an electric circuit 3. Discuss what was represented in the role-play. Batteries contain chemicals, which possess chemical energy. When chemicals react with each other, they generate electrical energy. The battery is the source of electrical energy and provides the 'push' to make the electrons move. Electrons carry the electrical energy from the battery to the bulb—this is energy transfer. Bulbs changes the electrical energy into light and heat energy—this is energy transformation. 4. Model and explain the purpose and features of an annotated diagram. 5. Draw an annotated diagram of the role-play and to explain each part of the circuit. 6. Share representations and develop a class circuit diagram with annotations. Review and discuss ways of improving them, making any changes. 7. Update the class science chat-board Lesson 7: Problem solvers: What's it all about? 	For the class: - Class science chat-board 1 decorated container (eg, a bucket decorated with tinsel, cellophane or crepe paper) for the 'bulb' - 50–60 (twice as many as the number of students) packets of energy (eg, pegs, counters) - Container labelled battery to represent the battery. For each student: - Science journal	Summative: Assessment opportunities: Discussion about what question to investigate, 'Problem Solvers: Investigation planner', science journal entries.
Elaborate	ACSIS232 ACSIS103 ACSIS104 ACSIS105 ACSIS221 ACSIS108 ACSIS110	1. Students will work in teams to solve a mystery. Introduce an enlarged copy of 'Lab notes: What's this all about?' template for planning investigations.	 For the class: Class journal Chat-board 1 enlarged copy of 'Lab notes: What's this all about' sheet. 1 enlarged copy of 	Discussion on switches. science journal entries

Item 1: Unit of work – Part A written

ACELA1515 ACELA1516 ACELA1517 ACELA1524 ACELA1526 ACELY1709 ACELY1816 ACMSP147 ST3-4WS ST3-5WT

- 2. Construct their own version of the circuit set-up. Use the 'Essentials Electrical Kit' and the 'Scientists' material box' equipment to solve the problem stated on the resource sheet.
- 3. Share ideas about what they thought the scientists could have been investigating. Record the ideas in class journal.

4. Students take the

- place of the scientists. Discuss investigation process and decide on investigation questions.
- 5. Discuss and check materials that might be needed to investigate the question.
- 6. Teams construct their circuits, test the materials and record their findings.
- 7. Discuss the investigations and associated vocabulary.
- 8. Introduce the terms 'conductors' and 'insulators' as scientific words that are used to describe the two groups of

- For each team:
- Role wristbands or badges for Director, Manager and Speaker
- Each team member's Science journal
- 1 copy of 'Lab notes: What's it all about? sheet
- 1 copy of 'Problem solvers: Investigation planner' sheet per team member:
- Essential Electrical kit
- Self-adhesive tape
- 1 clothes peg
- 1 piece of A4 card
- 1 'Scientists' material box' containing:
- Wood (eg, popsticks, toothpicks)
- Plastic (eg, straws, plastic cutlery)
- Rubber (eg, balloons,

		materials. 9. Students summarise and record their findings and evaluate	rubber bands) - Metal (eg, paperclips,	
		their investigation. 10. Share and discuss students' ideas and discuss	cutlery) - Paper and/or cardboard	
		improvements that could be made to their investigation.	- Paper and/or cardooard - Pencils (sharpened at	
		11. Add pictures, questions, ideas and reflections to the class	both ends)	
		science chat-board and new words to the keywords	- Gardening wire or twist-	
		section, formulate a question for investigation, construct a	ties	
		circuit and test their question for investigation, observe,	- Insulated copper wire	
		record and share results, discuss materials that conduct	with the ends stripped	
		electrical energy.		
		12. Students role play the features of conductors and insulators.		
		13. Discuss why or why not they conduct electricity.		
	ACSSU097	Lesson 8 – Squishy Circuits	For the class:	Formative:
	ACSHE098	1. Review class journal and chat-board	- Class science journal	Discussion on
	ACSIS105	2. Introduce salt dough and sugar dough – class predicts	- Class science chat-board	circuits, squishy
	ACSIS110	which will conduct electricity and which will insulate and	For each team:	circuit creations,
Elaborate	ACELA1515	discuss reasons and record predictions in the class journal	- Role wristbands or	science journal
	ACELA1516	and add to chat-board.	badges for Director,	Summative:
	ACELA1517	3. Explore creating circuits with both salt dough and sugar	Manager and Speaker	Rubric attached
	ACELA1524 ACELA1526	dough.Discuss why sometimes the light did not work and why? 8	- Salt dough - Sugar dough	
	ACELY1709	Ways – Deconstruct/Reconstruct	- Sugar dough - Essential Electrical kit	
	ACELY1816	5. Teacher explicitly explains short circuits using a diagram	- 12 LED lights	
	ST3-4WS	6. Students create short circuits and record diagrams.	- Small electrical fans	
	ST3-5WT	7. Images are shown of other squishy as inspiration and		
	VAS3.2	teams create their own squishy circuits. 8 Ways – Non		
		verbal		

	ACSSU097	Lesson 9 – Switched on	For the class:	
	ACSHE098	1. Discuss the role of switches in an electric circuit	- Class science journal	
	ACSHE220	2. Read through an enlarged copy of 'Making switches' sheet	- Class science chat-board	
Elaborate	ACSIS105	(Resource sheet outlines how students can construct	- 1 enlarged copy of	
	ACSIS110	different switches) and explain the purpose and features of	'Making switches'	
	ACELA1515	procedural texts.	- Collection of battery-	
	ACELA1516	3. Explain that the teams will make both types of switch,	operated devices	
	ACELA1517	shown on 'Making switches' sheet, one at a time.	- Team roles chart	
	ACELA1526	4. Discuss why a switch is a useful component in an electrical	- Team skills chart	
	ACELY1709	circuit.	For each team:	
	ACELY1816	5. Discuss how the switches constructed by the teams reflect	- Role badges	
	ACELY1712	switches that are used in devices and in households.	- Science journal	
	ACELY1715	6. Review symbols used in circuit diagrams and introduce the	- 1 copy of 'Making	
	ST3-4WS	circuit symbol for a switch. 8 Ways – Symbols and Images	switches'	
	ST3-5WT	7. Draw in their science journals a circuit diagram that	- Essential Electrical kit	
		includes a switch, using electrical symbols, annotating	- Optional: Light bulb	
		diagram to describe the role of the switch in a circuit.	holder	
			- Optional: a small	
			electric buzzer or motor of	
			the bulb	
			- Electrical switch 1	
			- 1 piece of A4 card - 1 metal paperclip	
			- 2 metal split pins or	
			thumbtacks	
			- Self-adhesive tape	
			- Electrical switch 2	
			- 3 corrugated-card	
			squares (10 cm x 10 cm)	

			- Aluminum foil A4 sheet	
	ACSSU097	Lesson 10 – Bright sparks	For the class:	Summative:
	ACSHE100	1. Introduce the word loop (Class is familiar with word	- Class science journal	Presentations based
Evaluate	ACSIS105	loops) activity using the scientific vocabulary of the	- Class science chart-	on models, science
	ACSIS107	unit. After word loop, organise the completed word	board	journal entries.
	ACSIS110	loop cards for display on the class science chat-board.	- Team roles chart	'Bright sparks:
	ACELA1515	Note: It is important that symbols are used only when	- Team skills chart	Reflecting on my
	ACELA1516	requested. Use chat-board to review the unit and how	- 'It's electrifying Word	learning' resource
	ACELA1517	students' ideas have changed and developed during the	loop cards resource sheet	sheet. Teacher looks
	ACELA1526	unit.	- 1 large sheet of paper for	for evidence of the
	ACELY1709	2. Teams construct a model of a torch using a supplied	affinity diagram	extent to which
	ACELY1816	paper torch net and creating a circuit displaying their		students understand:
	ACELY1710	understanding of electric circuits. Students will also	For each team:	That electric circuits
	ACELY1714	prepare a description. For example, students could:	- Role badges	provide a means of
	ACELY1715	 Write a procedure for constructing an electric 	- Science journal	transferring and
	ST3-4WS	circuit	- Optional: 1 copy of	transforming
	ST3-5WT	Create a mini-dictionary of key terms and ideas associated with the model	'Torch template' net resource sheet	electricity, scientific understandings can
	* 8 Ways –	Create a mini-poster that can be displayed with	- Optional: a small	solve problems that
	Symbols and	the model	electric buzzer or motor of	directly affect
	Images	 Make a computer-based presentation. 	the bulb	peoples lives.
		3. Review the activities and discuss what type of	- Essential Electrical kit	
		information students could include.	- 1 metal paperclip	
		4. Discuss the information that you will be looking for to	- 2 metal split pins or	
		assess students' models and descriptions	thumbtacks	
		5. Students plan and construct their models and	- Self-adhesive tape	
		descriptions.	- Materials for circuit	
		6. Students to share their models and descriptions with	description	
		their peers.	- 1 copy of 'Bright sparks:	

 7. Class reflection and evaluates on what they have learned, adding pictures, questions, ideas and reflections to the class science chat-board and new words to the keywords section. 8. Provide students with time to reflect on their learning in the writtend appropriate their copy of 'Pright smaller. 	Reflecting on my learning' sheet per team member Several self-adhesive notes per team member
in the unit and complete their copy of 'Bright sparks: Reflecting on my learning' sheet (rubric attached).	

Item 1: Unit of work – Part A written

Lesson 8 Squishy Circuits - Electric Circuit Assessment Rubric

Name: Date:

	Exceeds Expectations	Meets Expectations	Needs Improvement	Unacceptable	
Prediction	A prediction has been	A prediction has been	A predicted has been	A prediction has been	
	stated and is reasonable	stated clearly.	stated, but is unclear.	stated, but does not say	
	based on what has been			what will happen when	
	studied.			the circuit is constructed.	
Construction	The model is constructed	All parts are in the model	All but one part are in the	Several parts are missing	
	using all necessary parts	but the model is not	model and the model is	AND the model is not	
	and as shown in the	constructed as shown in	not constructed as shown	constructed as shown in	
	diagram.	the diagram.	in the diagram.	the diagram.	
Response	The response shows an	The response shows an	The response shows a	The response shows an	
	accurate and thorough	accurate understanding of	limited understanding of	inaccurate understanding	
	understanding of the	most scientific concepts of	the scientific concepts of	of the scientific concept of	
	scientific concepts of the	the lesson.	the lesson.	the lesson.	
	lesson.				
Spelling, Punctuation	One or fewer errors in	Two or three errors in	Four errors in spelling,	More than 4 errors in	
and Grammar	spelling, punctuation and	spelling, punctuation and	punctuation and grammar	spelling, punctuation and	
(D. 1. 11)	grammar in the response.	grammar in the response.	in the response.	grammar in the response.	

(Rubriclibrary.com, 2014)

Bright Sparks reflecting on my learning			
Name:			
Bright sparks:	I need help with this	I can do this myself	I can help others
Reflecting on my learning			with this
I can construct a model of an electric circuit to make a blub light up.			
I can describe the components of an electric circuit and their roles			
I can describe what happens in a circuit.			
I can describe the characteristics of conductors and insulators, and explain their roles in electric circuits			
I can use written and visual language to describe an electric circuit. For example, scientific language, symbols and diagrams			
I can present my written and visual information in an effective and well-organised manner.			
I can use effective oral presentation skills to demonstrate my			
knowledge and understanding of an electric circuit. For example,			
scientific language and a clear, audible voice.			
My Comments			
Teacher Comments			

Item 1: Unit of work – Part A written

	Risk Assessment							
Lesson	Potential Risk	Who is at risk?	Control measures	Likelihood of it happening	Severity of risk			
1	Student could swallow batteries	Students	Advise students not to place the batteries in their mouth	2/10	10/10			
2	Students could burn themselves on high voltage wires	Students	Advise students of the different wires and the precautions they need to take	2/10	8/10			
3	Could be exposed to lithium hydride and alkaline	Students / Teacher	Students are advised not to cut up batteries	1/10	10/10			
4	Students could hurt others	Student	Advise students of the correct behaviours when participating in whole group activities	7/10	2/10			
6	Students could harm one another whilst moving around the classroom.	Students	Advise students of the correct behaviours whilst participating in whole group activities and role plays	8/10	3/10			
7	Students could burn themselves due to batteries & globes overheating	Student	Advise students to take caution with batteries & globes in the circuit if they have been on for a period of time.	7/10	4/10			
7	Students could cut their fingers on paper, copper wires, thumbtacks & paper clips	Students	Advise students to take care around paper, copper wires, thumbtacks and paper clips	7/10	6/10			
8	Students could allergic reactions to plasticine	Students	Advise students not to eat the plasticine, especially if they have any intolerances to gluten and/or lactose	9/10	1-6/10 (dependent on allergies)			
9	Students could injury themselves whilst using equipment	Students	Advise students of the correct way to use all equipment prior to commencement	6/10	6/10			
9	Students could cut themselves on broken globes (glass)	Students	Advise students of classroom rules. Advise the teacher if there is a breakage of glass.	2/10	2/10			

(Det.nsw.edu.au, 2014)

Reference List:

- Bbc.co.uk, (2014). *BBC KS2 Bitesize Science Electrical conductors: Play*. [online] Available at: http://www.bbc.co.uk/bitesize/ks2/science/physical_processes/circuits_conductors/play/ [Accessed 2 Jul. 2014].
- Black, P. and Wiliam, D. (1998). *Inside The Black Box*. 1st ed. [S.1.]: Nfer Nelson.
- Board of Studies, New South Wales. (n.d). NSW Syllabuses for the Australian Curriculum: Science K-10 (Incorporating Science and technology K-6) Syllabus. Retrieved from http://syllabus.bos.nsw.edu.au/science/science-k10/
- Board of Studies, New South Wales. (n.d). *NSW Syllabuses for the Australian Curriculum: Mathematics K-10 Syllabus Syllabus*. Retrieved from http://syllabus.bos.nsw.edu.au/mathematics/mathematics-k10/
- Board of Studies, New South Wales. (n.d). *NSW Syllabuses for the Australian Curriculum: History K-10 Syllabus*. Retrieved from http://syllabus.bos.nsw.edu.au/history/history-k10/
- Bybee, R.W. (2010). The Teaching of Science: 21st Century Perspectives. Arlington, VA: NSTA Press.
- Det.nsw.edu.au, (2014). *Policies & procedures: Department of Education and Training*. [online] Available at: https://www.det.nsw.edu.au/policiesinter/category.do?level=Schools [Accessed 2 Jul. 2014].
- Primary Connections, (2014). *It's Electrifying*. [online] Available at: http://www.scootle.edu.au/ec/viewing/S7155/its-electrifying-2012/index.html#Top [Accessed 1 Jul. 2014].
- Rubriclibrary.com, (2014). *Creating an Electric Circuit | Rubric Library*. [online] Available at: http://rubriclibrary.com/assessment-methodologies/course-embedded-assessment/creating-an-electric-circuit/ [Accessed 2 Jul. 2014].
- Wilson, J., & Murdoch, K. (2004) What is Inquiry Learning? Retrieved 17th September 2012 http://resourcebank.sitc.co.uk/Resources/Priority2/2Noumea/NoPr_T006inquiryLearning.pdf